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Abstract—Remote conference applications are increasingly
widely used, but currently, their improper data encryption
methods, proprietary implementations, and dial-in access cause
concerns about privacy breaches. As such, there is a need for
trustworthy and secure solutions for these production tools.
In this paper, we present mTunnel, a transparent software
layer in the host system for securing conference applications
without sacrificing the key functionalities and convenience.
The basic idea of mTunnel is to encrypt sensitive data, such
as audio, video, text, etc., before it is obtained by untrusted
application clients. mTunnel leverages the audio and video
streaming capabilities of the conference applications to tunnel
the encrypted content to the remote end. mTunnel involves a
software framework to accommodate the media interception
and representation through I/O virtualization based on virtual
drivers. Moreover, mTunnel supports complete E2EE group
conversations even in a mixed IP and public switched telephone
network (PSTN). We implement mTunnel and evaluate it with
several commercial products. Results show its feasibility and
overhead.

1. Introduction

Real-time remote conference applications have been an
essential communication mode since the outbreak of the
pandemic [1]. They stream the user’s audio and video to
the end at a far distance to reproduce the user’s presence
through network and cloud technologies. Compared with
traditional messaging applications like Telegram and What-
sApp, remote conference applications focus more on facili-
tating learning, collaboration, and productivity in enterprise
situations. For this reason, they feature group video calls,
screen sharing, and dial-in access over telecommunication
networks. Currently, many home, business [2], and academic
activities [3] still and are likely to continue relying on
conference applications. Along with this trend, their privacy
and security issues are increasingly attracting attention [4],
[5], [6].

Data streaming within remote conference applications
is not merely a practice of end-to-end data transmission
over IP networks. As shown in Fig. 1, video and audio data
have to be processed and forwarded by the cloud servers to
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Figure 1: Data Security Issues in Remote Conference
Applications. User data is vulnerable to privacy breaches
due to untrusted clouds, blackbox client software, and un-
encrypted dial-in connections.

achieve reliable and good service quality. However, in many
cases, the cloud is neither transparent nor trustworthy. To
name a few examples, Zoom was blamed for abusing user
information for profit [7]. An Amazon employee was found
stealing user data from the cloud [8]. These ill purposes also
suggest that user data is of high attacking value and faces
threats along its way to the remote end.

A common way to establish a trustworthy streaming
path is to use end-to-end encryption (E2EE). E2EE ensures
that no entities other than the participants can get access
to the plaintext, which largely avoids the aforementioned
threats. Some conference products claim to provide E2EE
features [9], [10], but the problem remains. First, the ap-
plication clients of widely-used commercial products are
proprietary. Users have no easy means to audit their E2EE
implementation, such as the key distribution process [11],
[12]. Secondly, practical choices in conference tools must
balance various factors, including security, service quality,
availability, institutional subscription, etc., which may lead
to diverse choices in different circumstances. Moreover, as
an essential feature of enterprise applications, dial-in access
from telecommunication networks is currently incompatible
with E2EE, as the cloud requires the use of unencrypted
plaintext to exchange media information with the public
switched telephone network (PSTN).

In this paper, we propose mTunnel, a software layer in
the host system for securing conference applications without



sacrificing their functionalities and convenience. mTunnel’s
approach is to encrypt the media streams before they are
acquired by the application clients. At the same time, it ex-
poses a consistent media I/O interface that is transparent to
existing programs. Its advantages are twofold. First, mTun-
nel encapsulates media data with an additional encryption
layer, thereby preventing unauthorized clients and servers
from snooping on media streams. Second, regardless of the
chosen conference tools, mTunnel consistently offers E2EE
capabilities upon them without introducing modifications.

To realize mTunnel, the first challenge is the encryp-
tion method. Raw media data, such as video and audio,
are different from ordinary binary data as it contains a
significant amount of redundancy [13], and the application
client compress them in a lossy manner to reduce network
overhead before transmitting. However, since the data is
encrypted by mTunnel before entering the client, the en-
cryption method has to be able to resist compression loss,
but known secure ciphers1 are all based on lossless data. Our
solution is to treat the conference media streams as channels
for tunneling the information rather than the information
itself. Specifically, mTunnel first encrypts the original media
stream into ciphertext chunks and then represent them in a
new media stream consisting of frames of “barcode”. The
new stream is then fed to the client to transmit.

The second problem is how to apply the above method
in a convenient and generalized manner, preferably without
modifying application clients/servers as well as the host
operating system. Similar to virtualization, mTunnel pro-
vides a consistent media input and output (I/O) interface
to application clients through making full use of virtual
drivers. The media content of the virtual driver is produced
by a user-space mTunnel service process, which acquires
and encrypts/decrypts the actual media content. Deploying
mTunnel only requires the standard program installation on
the host system.

Thirdly, remote conferences likely involve multiple par-
ticipants, and mTunnel has to ensure security and trust-
worthiness among each and every participant. To achieve
this, mTunnel is based on Signal, an E2EE protocol for
group conversation [16]. mTunnel incorporates a module to
manage key material and implements the full E2EE protocol
over its media stream channels.

To evaluate the above designs, we implement mTunnel
and test it with mainstream commercial products, including
Zoom, Teams, and Tencent Meeting. Our evaluation shows
its effectiveness and overhead under different network con-
ditions and system configurations.

Our main contributions are as follows:
• We investigate the security risks in current remote

conference solutions and propose a practical software layer
in the host system to enforce end-to-end encryption.
• We propose systematic methods to utilize audio,

video, and text streams of conference application clients

1. Encryption-then-compression methods, e.g., chaos-based encryp-
tion [14], image block shuffling [15], are computational intensive and not
cryptographically secure.

Conference Product Download† E2EE OpenSource PSTN
Ding Talk [17] 600+* # ×
Tencent meeting [18] 300+* # ×
BlueJeans [19] 1+ # ×
Zoom [20] 500+ G# ×
Microsoft Teams [21] 100+ G# ×
Webex Meetings [22] 50+ G# ×
Jitsi Meet [23] 10+ G# X
Element [24] 1+  X
- E2EE Tool
mTunnel Layer /  X

#: Point-to-point encryption
G#: End-to-end encryption but not set by default
 : End-to-end encryption and set by default

: No PSTN dial-in support
: PSTN dial-in support in P2PE mode
: PSTN dial-in support in E2EE mode

†The majority of download data (in millions) is sourced from Google
Play. For those marked with *, they have been obtained from the financial
report of relevant companies, as they are not available on Google Play.

TABLE 1: Remote Conference Applications Summary.

for general-purpose data transmission. We validate their
effectiveness across various clients and practical situations,
including PSTN dial-in connections.
•We propose a lightweight I/O virtualization framework

that utilizes virtual drivers to intercept and process host
I/O data, thereby avoiding the need for modifications to the
operating system and upper-layer software.
• We develop a full set of security protocols based on

Signal to ensure E2EE for group conferences.

2. Secure Communication Schemes in Remote
Conference Applications

This section analyzes the security mechanisms employed
by remote conference applications in the market. As shown
in Table 1, we categorize them into three types: point-
to-point encryption (P2PE), proprietary end-to-end encryp-
tion (P-E2EE), and open-source end-to-end encryption (O-
E2EE).

Point-to-point encryption (P2PE) is similar to common
TLS-based web access. It encrypts the data between the
cloud server and application clients. However, from the
server’s perspective, the user’s data streams remain unen-
crypted. Thus, a malicious insider or an external adver-
sary who has compromised the server would still be able
to intercept communications. P2PE allows companies to
exploit user privacy [25], [26] and facilitates government
censorship. For these reasons, P2PE is generally considered
untrustworthy.

End-to-end encryption (E2EE), on the other hand, en-
crypts data between application clients. The clients authen-
ticate each other, and the cryptographic keys are generated
and kept confidential locally, ensuring that even the cloud
servers do not have access to the encrypted content. Now
then, many conference applications offer the E2EE option,
but it is generally not enabled (for free). For example,
Zoom employs P2PE as the default mode, and users have to
manually enable E2EE. Teams only offers E2EE for Office



365 subscribers. However, for these proprietary solutions,
there is often no easy way of auditing their implementation.
In 2020, Zoom came under scrutiny for falsely claiming
to offer end-to-end encryption [25]. Moreover, even with
correct E2EE implementation, since user identities are still
managed and verified in blackbox, the application providers
can still intercept user data by employing man-in-the-middle
attacks using forged identities. This echoes a survey con-
ducted in 2021, which indicated that around one-third of
respondents expressed a lack of trust in proprietary E2EE
(P-E2EE) implementations [27].

In comparison to P-E2EE, open-source E2EE (O-E2EE)
solutions allow users to audit E2EE implementation. How-
ever, they do not stand out in terms of functionality and
service quality beyond the O-E2EE feature. This is one of
the reasons why O-E2EE solutions only capture a small
market share as shown in Table 1. Both P-E2EE and O-
E2EE solutions offer the on-premise deployment, i.e., in
local IT infrastructure, to address concerns related to cloud
processing. However, on-premise approach incurs higher
deployment costs and does not completely mitigate threats
from external adversaries.

In Table 1, another feature that both P-E2EE and O-
E2EE fail to support is dial-in access. In many meeting sce-
narios, participants might need to join the conference using
PSTN conference phones or cellular phones (for stability).
The primary reason E2EE fails to work is that conference
servers have to access the plaintext of the media to facilitate
data exchange between IP and PSTN networks.

3. Threat Model and Design Goals

Our threat model includes two primary roles: the victims,
who refer to the participants of the remote conference and
want to keep their conversation content (e.g., video/audio)
confidential, and the adversary, who intends to obtain one
or multiple victims’ data transmitted through the conference
applications. The conference application consists of two
components: the application client, which is installed on the
victim’s host device, and the infrastructure, which includes
the involved data transmission network and data processing
servers . We make no assumptions about the implementation
and deployment of the conference application infrastructure,
i.e., it can be cloud or on-premise.

We assume that participants have obtained information
for verifying each other’s identity, i.e., identity and public
key pairs, through other trusted channels before launching
the conference.

We assume that the adversary is a network attacker,
meaning it cannot physically capture/record the victims’
screen or audio. We assume that the adversary has full
control over the application infrastructure, meaning that the
adversary can access, replay, and generate arbitrary on-path
data and key information. Such attackers are most likely to
originate from within the cloud service provider, but could
also potentially come from external advanced attackers.

Through the application client, we assume that the ad-
versary cannot compromise the victim’s operating system
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Figure 2: mTunnel Architecture

and can only access I/O resources specified by the victim.
The latter is feasible since the victim can use effective
flow control [28], permission management tools [29], open-
source application client, or isolate the client in a sandbox.

Our design goal is to secure the victim’s video, audio,
and text information obtained and transmitted by the confer-
ence application client. In order to cover a wide user base,
we do not consider rendering a new conference application.
Instead, we want to leverage existing conference appli-
cations, including P2PE and P-E2EE implementations, no
matter whether they are trustworthy or not. Additionally, we
aim to preserve the functionalities of the original conference
applications, such as allowing dial-in access, while avoiding
modifying the application and the host operating system.

However, we do not protect against deny of service
(DoS) attacks, as they do not pose privacy leakage issues.
Also, we do not protect against privacy breaches related
to the identity information of the victim’s conference ap-
plication account. When necessary, the victim can use fake
identities and proxies when registering and using the service.
We also do not protect against timing channels resulting
from the message exchanges during the conference commu-
nication.

4. Design Overview

We present mTunnel in the following sections. As shown
in Fig. 2, mTunnel is a software layer in the host system,
transparent to application clients. It encrypts data streams
prior to their delivery to the application clients, and decrypts
them before their presentation to the user. In other words,
we consider the original media channel to be a tunnel for
transporting the actual content encapsulated by additional
encryption operations. The design of mTunnel comprises
three key components: Channel Adapter, I/O Isolator, and
Key Manager.
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Channel Adapter (§5) aims to facilitate E2EE data
transmission with general media streams. In particular, it
conveys information over the media channels of existing
conference applications, such as video and audio streams.
Each channel has specific properties. Moreover, due to
compression and transcoding, most media channels are in-
herently lossy. To enable reliable and secure transmission
over lossy media channels, the channel adapter incorpo-
rates dedicated preprocessing, encryption, and modulation
designs.

I/O Isolator (§6) is a lightweight middle layer that
isolates untrusted application clients from accessing raw I/O
resources. It utilizes virtual drivers to delegate the channel
adapter to apply protection operations on media streams and
abstract consistent I/O interfaces for upper-layer programs.
I/O isolator is a universal solution that can work with all
remote conference applications without requiring any client
and server modifications.

Key Manager (§7) is designed to implement the E2EE
protocol stack. When launching the conference, the key
manager verifies the identities of the participants and gener-
ates initial pair-wise session keys. During the conversation,
it advances the session keys used by the channel adapter.

The workflow of mTunnel is represented by the num-
bered arrows in Fig. 2. For ease of description, we consider
a scenario with two participants, sender and receiver. ¶ On
the sender’s side, once the raw data is captured by input
devices like cameras, microphones, and keyboards, it is first
intercepted by the I/O isolator. · The raw data is then passed
to the channel adapter to undergo additional protection op-
erations, including compression, encryption, encoding, and
modulation. ¸ The channel adapter subsequently returns the
encrypted data back to the I/O isolator. ¹ The I/O isolator
then uses virtual drivers to present the processed data to
the application clients as if the data is from actual device
drivers. º Then, the application clients process and stream
the processed data to the remote receiver.

On the receiver’s side, the procedures are reversed.
» The application clients post the encrypted content, e.g.,
video, audio, text, etc., to the operating system for presen-
tation. ¼ The I/O isolator intercepts the streams and feeds
them to the channel adapter for demodulation, decoding,

decryption, and decompression. ½¾ Afterwards, the recov-
ered data is delivered to appropriate output devices, enabling
users on the receiver end to consume the original content.

5. Design: Channel Adapter

As depicted in Fig. 3(a), the remote conference sce-
nario covers a diverse range of data modalities, comprising
text messages produced by keystrokes, video streams from
cameras and screen sharing, and audio signals captured by
microphones. Remote conference applications, e.g., Zoom,
serve as intermediaries to transmit data of multiple modali-
ties from the sender to the receiver.

The transmission channels exposed by these data modal-
ities can be classified into two primary categories: lossless
channels and lossy channels. Text messages exemplify a
lossless channel, as the data is transmitted reliably with-
out undergoing any lossy modifications. As encrypting and
decrypting messages on a lossless channel is similar to local
operations, we omit its description in the main body (§A).

In contrast, video and audio streams are lossy channels.
In order to ensure cryptographic security, we need to use
ciphers on lossless input/output. However, there is no simple
solution for achieving secure and reliable data transmission
over such lossy channels. The reason is not only due to
media compression, but also because of the complexity of
network transmissions. Media streaming applications dy-
namically adjust compression rate, i.e., the media channel
capacity, based on network conditions [30], Additionally,
these channels are subject to various unpredictable and
inherent noises and distortions [31] caused by packet loss,
subtle media gateway processing, etc.

As shown in Fig. 3(b), the Channel Adapter essentially
applies an additional encapsulation layer over the encrypted
content to enhance the resilience against lossy operations.
We present the detailed Channel Adapter designs for video
(§5.1) and audio (§5.2) streams in the following two sub-
sections, respectively.

5.1. Lossy Channel Adapter for Video

Our approach is to compress and then encrypt the most
essential information to be transmitted, and then project it
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into a space with sufficient redundancy to withstand the
impact of channel loss. To achieve this, we employ a 2D
barcode similar to QR codes, since they face similar com-
munication challenges, but as our scenario is non-mobile,
our code uses colors and smaller blocks to represent bits,
leading to a higher coding density.

Sender Operations: As shown in Fig. 3(b), once the
camera/screen frame intercepted by the I/O Isolator is re-
ceived, the lossy channel adapter will first perform lossy
compression on the frames, including downsizing and intra-
frame compression to expand the redundancy for subsequent
encoding. It is worth noting that inter-frame compression is
intentionally avoided, i.e., all frames are key frames. This is
because a drop of a key frame in inter-frame compression
can result in a set of subsequent frames becoming undecod-
able. Therefore, we only adopt intra-frame compression to
ensure the scheme is not impacted by frame dropping caused
by network congestion or proactive network flow control.

After compression, the lossy channel adapter encrypts
the compressed frame data with key streams from the Key
Manager. It appends an error correction coding (ECC) suf-
fix for error resistance. We use a 4-byte Reed–Solomon
code [32] (RS code) for every 100 bytes of data as ECC.
Subsequently, the channel adapter employs a colored 2D
barcode to convey the encoded data. As illustrated in
Fig. 4(b), the code area consists of square blocks, with
each block filled with one of 8 different colors indicated
by the encoded data, allowing each block to represent 3
bits. The border of the code area is kept white to facilitate
code locating for the receiver.

Receiver Operations: As depicted in Fig. 4(c) and
Fig. 4(d), the I/O Isolator keeps monitoring the display
frame buffer of the User Interface (UI) of the application
client and reports the content to the channel adapter. The
adapter uses edge detection to locate every 2D code in the
client UI based on the large gradient of the white border.
Note that the actual resolution of the received 2D code
might vary with different client layouts, so the border is
further utilized to locate each color block by calculating the
resizing ratio. Subsequently, the channel adapter performs
error correction, decryption, and decompression to recover
the original transmitted frame and delivers it to the I/O
Isolator for recomposition and display over the client UI.

Adaptation to Different Client Layouts: Depending on
user preferences, the receiver’s client may exhibit different

layouts to arrange participants’ video views. A typical layout
is shown in Fig. 4(d). The speaker’s camera view or the
shared screen content occupies the majority of the UI space,
while the thumbnail views of other participants are displayed
on the sidebar. The different view sizes lead to different
capacities of the corresponding video channels. A larger
size allows for a larger code block size (more robust) and
more code blocks (more information per code). By default,
the sender chooses conservative configurations, i.e., 4×4-
pixel blocks for the speaker view and 8×8-pixel blocks for
the thumbnail views. Currently, the size of the code area is
fixed at 1280×720 (720p) pixels, leading to a capacity of
4.9k bytes2 in one thumbnail view frame.

5.2. Lossy Channel Adapter for Audio

Conference applications handle video and audio streams
in a similarly lossy way, but two key differences lead to
the specific audio adapter designs. Firstly, the audio stream
is a broadcast channel where the voices of all participants
are mixed together in the time domain. Although it can
be multiplexed in the frequency domain, our practice sug-
gested that conference products limit the spectrum of their
audio streams to the audible range3 to reduce the network
overhead, which inherently limits the number of concurrent
participants. Secondly, an important feature of enterprise
conference applications is the support for PSTN dial-in
access, which, however, relies on transparent transcoding on
the application cloud and hence is incompatible with current
E2EE solutions. §5.2.1 and §5.2.2 describe our designs to
address the two differences.

5.2.1. Piggybacking Audio Streams in Video Channel.
To support simultaneous audio conversation among multiple
participants, as shown by the dashed line in Fig. 3(a),
our method is to piggyback the audio stream with the
video stream in the colored barcode. As the conference
client displays thumbnail videos of different participants
(Fig. 4(c)), the audio streams of multiple speakers can be
separated accordingly4. The encoding and decoding proce-

2. (1280-64)×(720-32)×3/(8×8)/8=4902, (minus the border).
3. Zoom’s high fidelity music mode can almost fully utilize the audible

range by providing an audio bandwidth of up to 24 kHz.
4. The physical camera can be disabled to switch to the “audio-only”

mode. In this case, the virtual camera will generate blank video frames,
causing the receiver to automatically display black (blank) thumbnails.
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dures are similar to the video case. The audio stream is
compressed at a constant bit rate (CBR) of 1600 bps with
Codec2, a modern speech compression algorithm designed
for low-bandwidth usage with a bit rate range of 450 to
3200 bps [33], [34]. By default, 168 bits in each barcode
frame are reserved for audio content.

Bubbling Up Current Speakers: The prerequisite of
the above method is that the conference clients are display-
ing the thumbnail of the speaker, and this is determined by
the layout of the client. The Gallery View (where thumbnails
of participants are arranged in a square array) allows for
conversation among all participants (e.g., 7×7). However,
in scenarios involving content sharing, the client will switch
to the Speaker View (Fig. 4(d)) to enlarge the display area
of the shared content, such as the pinned main speaker,
desktop, slides, etc. This layout only displays thumbnails
in the sidebar (typically 3 to 4 participants). To enable
multi-participant conversations in this layout, we utilize the
thumbnail view switching feature.

That is, when a client generates voice in the actual
audio channel, other conference clients will automatically
switch that client’s thumbnail view to the top of the sidebar
to enhance interactivity. Based on this feature, when the
sender of mTunnel detects that its user is speaking, it will
intentionally generate a 5000 Hz signaling tone in the actual
audio channel to stimulate its user’s thumbnail to be shown
in the sidebar of all participants. The signaling frequency
is chosen to avoid interfering with PSTN audio signals, see
§5.2.2. With this scheme, even when the holding space of
the thumbnail views is limited by the layout, the video/audio
streams of the current speakers can be prioritized, displayed,
and played to the audience.

5.2.2. Securing PSTN Dial-in Audio Streams. Current
conference applications utilize well-established Voice over
Internet Protocol (VoIP) gateways to accommodate PSTN
dial-in participants. As shown in Fig. 5, the application cloud
gathers audio streams from the IP network, synthesizes them
into a single audio track, and then broadcasts it to PSTN
telephone participants through the dedicated gateway. The
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Figure 7: Audio Channel Modulation. Bits are represented
in chirp signals to withstand noise.

audio streams generated by the PSTN participants undergo
the reverse process to reach the IP participants.

In this sense, the audio channel is the only established
relation between IP and PSTN participants. To maintain the
confidentiality of audio streams and ensure compatibility
with the PSTN infrastructure throughout the process, we
employ an approach different from the pure IP case: the
original audio stream to/from the PSTN participant is com-
pressed and encrypted, and then delivered using the audio
channel, rather than being loaded in the video barcode.

Audio Channel Modulation: As shown in Fig. 6 (5G-
to-IP), audio signals transmitted between PSTN and IP
networks exhibit a narrow bandwidth, while IP-to-IP and
5G-to-5G calls show a wider bandwidth (higher quality).
This is likely because VoIP gateways intentionally limit the
bandwidth of the audio signals passing through to ensure
maximum compatibility, as legacy PSTN uses a cutoff fre-
quency of 3400 Hz [35].

Another issue in Fig. 6 is the notable presence of subtle
frequency-domain noise. The audio signal may undergo
acceleration or deceleration over a short period, potentially
resulting from network delay variations during application
cloud or VoIP gateway transcoding. To leverage these sig-
nals for information transmission, we employ a specialized
modulation scheme: the chirp signal [36]. A chirp signal
(Fig.7(a)) dynamically varies its frequency over time, with
the key advantage that its autocorrelation energy remains
robust in the presence of such frequency noise.

Specifically, as shown in Fig. 7(b)(c), we use a waveform



with its frequency increases from f0=800 Hz to f1=1200 Hz
to represent bit ‘0’ and another waveform decreasing from
f0=2200 Hz to f1=1800 Hz to indicate bit ‘1’. When de-
modulating, the bit is determined according to the power of
the two frequency ranges. When a bit is decoded, we apply
correlation on the chirp signal to detect the precise location
of the bit. This ReSync(hronization) procedure helps to
resist sample offsets due to prominent frequency noise.

By default, the chirp signal for 1 bit lasts for 1 ms,
corresponding to a raw data rate of 1000 bps. The audio
channel is framed every 40 ms. Each frame carries a 28-
bit media payload (700 bps), a 4-bit ECC, and 8-bit key
material. Additionally, every 25 frames are accompanied
by a 10-bit header for synchronization and a 3-bit CRC.
The original audio stream is compressed to 700 bps using
Codec2, and then loaded into the audio frames.

Secure Voice Relay between IP and PSTN: Unlike
ordinary use cases, as the application cloud is no longer
able to decrypt and correctly synthesize the encrypted audio
streams, we introduce a primary participant to take this role,
(Fig. 5). Specifically, before a conference begins, one of the
IP participants, e.g., the host, is nominated as the primary
participant. It exchanges audio streams between the phone
participant and other IP participants:
⇒ IP to PSTN: The primary participant receives, de-

crypts, and mixes all the audio streams from the IP video
channel, it re-encrypts the result with the session key (§7) of
the phone participant. Then, it modulates and transmits the
encrypted audio into the IP audio channel. The application
cloud will forward the audio stream to the phone participant
through the PSTN gateway.
⇐ PSTN to IP: When the phone participant transmits

the modulated audio over PSTN, the application cloud dis-
tributes it to all the IP participants through the IP audio
channel. However, only the primary participant is able to
decrypt it. Upon finishing decryption, the primary partic-
ipant re-encrypts and distributes it among IP participants
through the IP video channel.

To emulate audio processing on the phone, we currently
connect all audio signals from the conference speakerphone
and the smartphone out to an external computer, i.e., the En-
/Decoding Helper. We believe that this can also be achieved
through privileged software or firmware upgrades.

It is worth noting that the above relay method only
allows a single PSTN phone participant to join the secure
conversation. We will discuss how to scale it to support more
PSTN participants in §11. Moreover, due to the limited data
rate of the audio channel, the PSTN participant is not able to
maintain pairwise encryption with every participant. It has
to rely on the E2EE connection to the primary participant
to reach other attendees. We will revisit this issue in §7 and
§9.

6. Design: I/O Isolator

The purpose of the I/O isolator is twofold: to isolate un-
trusted applications from accessing unprotected I/O data and
to present the channel adapter as a standard and consistent

I/O Isolator

Channel 
Adapter

Original Driver Virtual DriverInput Device

Application 
Client

Figure 8: Data Flow in Sender’s I/O Isolator. The I/O
Isolator first obtains the raw data from the original device
driver, and then streams it to the channel adapter for encryp-
tion. Subsequently, the encrypted content represented in the
correct format is returned back to the virtual driver to feed
to the applications. As a result, the applications are isolated
from the sensitive raw input data.

I/O interface to applications. Depending on the desired level
of isolation, the I/O isolator can be implemented in various
ways, such as through virtual machines or isolated physical
hosts. In this section, we propose a lightweight isolation
method using virtual drivers.

Its operating concept is shown in Fig. 8. On the sender
side, the I/O isolator intercepts the data stream from the
original device driver. The intercepted data is then forwarded
to the channel adapter for encryption, and subsequently
directed to the virtual driver to feed to the applications. The
receiver’s I/O isolator operates reversely. Throughout the life
cycle of the data streams, the application clients and the
cloud are only able to access the encrypted copy and hence
ensure confidentiality. Considering the adoption of Windows
in office scenarios, we elaborate our implementation of
various virtual devices on Windows platform5.

Virtual Camera: The virtual camera is implemented
with IMFVirtualCamera API, offered by the Microsoft Me-
dia Foundation (MMF) platform [38]. MMF allows us to
create a user-space software program that applications can
detect and use as if it were an actual camera device [39].
It retrieves barcode frames from the channel adapter, and
simulates the video stream generated by a camera by using
the MMF media source component to produce a video
stream with specific encoding, frame rate, and resolution
profiles. The application clients are compelled to use the
virtual camera by restricting their access permissions to
other camera instances.

Virtual Display Buffer: The content in the display
buffer, i.e., framebuffer, will be output to the monitor by
the graphics card. We maintain an additional layer of display
buffer to allow users to see the decrypted content. The I/O
isolator initially hides the original client UI in a background
virtual window space and continuously captures its content.
The captured content is then sent to the channel adapter for
demodulation and decryption. Subsequently, the I/O isolator
composites an identical client UI with overlaid decrypted
videos onto the corresponding areas. Technically, we uti-
lize ffmpeg gdigrab [40] to capture the display buffer and
Tkinter [41] to render the new UI.

5. Linux-based implementations can leverage loopback drivers [37].
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Figure 9: Key Manager Operation for Group Conver-
sation. Key managers update session keys to encrypt the
group conversation.

The display buffer also serves as an input device dur-
ing screen sharing in the sender. To secure the shared
screen/application window, the I/O isolator initially obtains
the Process ID (PID) of the application that the user intends
to share. It then captures the display buffer associated with
that PID and sends it to the channel adapter for encryp-
tion. Following this, it allocates a new display buffer to
contain the generated 2D barcode. Application clients are
then forced to access and share the barcode buffer instead
of other display buffers.

Virtual Microphone and Speaker: Unlike the virtual
camera driver, Windows does not offer a user space API
for virtual audio devices. We resort to Kernel Streaming
(KS) [42] based on the Microsoft Windows Driver Model
(WDM) audio components [43]. Specifically, we adopt Vir-
tual Audio Cable (VAC) [44] as our virtual audio driver.
The I/O isolator captures, encrypts, and re-feeds the audio
stream to the application client in a process similar to that
of a virtual camera.

7. Design: Key Manager

Key manager consists of two main functionalities: ses-
sion key establishment and key updating. Our implementa-
tion is built on the framework of the Signal protocol [45],
[16]. In the following, we briefly introduce the Signal’s
implementation and highlight mTunnel’s modifications.

Key Establishment: Before launching the conference,
all participants have already shared their initial public ratchet
keys and identity keys through a Trust on First Use (TOFU)-
like scheme [46] or a trusted channel, e.g., email, SMS
messages. The ratchet key is used for computing session
keys and is valid only for a particular conference. The

identity key is a long-term public key associated with the
identity of the participant.

Upon joining in the conference, the participants’ key
managers start to establish pairwise session keys. Consider
participant A for example. It uses its initial private ratchet
key SKA1, participant B’s initial public ratchet key PKB1,
and both parties’ identity keys to compute an initial session
key SKAB1 with ECDH [47] and HKDF [48] algorithms.
Similarly, other pairwise session keys can be generated.

Key Updating for Group Conversation: The pairwise
session keys are not suitable for group conversations because
each key pair is unique, hence the sender has to duplicate
and encrypt the same content for the same number of
times as the pairs, which lacks scalability for large video
conference. Therefore, the key manager generates a random
number as an ephemeral key [49], i.e., EK, to encrypt
the media streams, and the channel adapter uses each and
every pairwise session key to encrypt the ephemeral key
and prepend them to the encrypted media streams. In this
way, the media content is only transmitted once and only
the participant with the correct session key can obtain EK
to decrypt the media content.

As shown in Fig. 9, the Signal protocol uses the Double
Ratchet algorithm [50] to update session keys to enhance se-
curity. A simplified example is: participant A communicates
with participants B and C. It obtains two pairwise session
keys (SKAB1 and SKAC1) in the previous phase. For the
subsequent message, participant A generates an ephemeral
key (EK1) to encrypt its media data with AES-128-GCM.
Then, it generates a new ratchet key pair (SKA2 and PKA2)
and uses SKA2 alone with other participants’ prior public
ratchet keys (PKB1 and PKC1) to update the session keys
(SKAB2 and SKAC2). Subsequently, it uses the new session
keys to encrypt EK1 and append them alone with PKA2 to
the message. When participant B receives A’s message. It
retrieves PKA2 and combines it with SKB1 to calculate the
new session key SKAB2 for decryption. When participant B
needs to update SKAB2, it generates a new ratchet key pair
(SKB2 and PKB2) and utilizes SKB2 and PKA2 to compute
the next session key SKAB3.

Key Manager of PSTN Participant: If one of the partici-
pants is a phone participant, its key manager only performs
key establishment and key updating with the primary host
through the audio channel. The phone participant relies on
the dedicated primary participant to receive and broadcast
messages from/to the IP participants.

Key Material Transmission: The key material used for
E2EE, e.g., EK, PK, MAC, etc., is carried through the
video and audio channels6. We update the ratchet keys every
10 seconds, and the content exceeding the capacity of a
single frame is fragmented and transmitted with multiple
frames. We utilize an additional ECC layer to protect these
information against burst errors.

6. Depending on the media compression ratio and the number of ECC
bits, the available capacity of the video and audio channel for key material
is about 15 kbps and 98 bps, respectively.
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Figure 10: Factors Affecting Video Tunneling Capacity.

8. mTunnel Performance

In this section, we conduct experiments to evaluate non-
security-related performance of mTunnel.

8.1. Evaluation Methodology

All experiments are conducted on PCs with Intel
i5-8500HQ and 8 GiB RAM. The operating system is
Windows 11. The display resolution of its desktop is
1920×1080. A HIKVISION DS-E12 webcam utilized for
the experiments is set to a resolution of 1280×720 pixels.
Both the sender and receiver operate in 10 fps video frame
rate to ensure reliability. The sampling rate of the audio
interface card is 48,000 Hz. We set the microphone to be
mono channel for all experiments. The experiments primar-
ily focus on Zoom as a representative remote conference
application, but the feasibility of mTunnel is also tested on
other applications, including Teams and Tencent Meeting.

For Zoom, the Speaker View layout and default settings
are used, with the exception of disabling the noise reduction
function during voice transmission. The Zoom meeting host
is a Zoom One Pro user to allow PSTN participants to
join. All other participants are free users. We evaluate group
conferences with 10 IP participants. Unless otherwise stated,
we involve three IP participants in evaluation tests. Two
participants are within the same local area networks (LAN)
and the third is connected to the public network. We did not
notice special optimization for LAN connections in Zoom.

In the following, we will first evaluate the performance
of tunneling two primary multimedia modalities, i.e., video
and audio streams, in remote conference applications. We
will examine the factors that affect tunneling capacity,
as well as the quality degradation and introduced latency
caused by the adoption of mTunnel. We also will assess
the feasibility of supporting group conversations. Then, we
will examine the system overhead imposed by mTunnel on
computing and memory resources. The adopted evaluation
metrics are as follows:
• Bit Error Rate (BER) indicates the number of bit errors
over the number of received bits.
• Goodput (bps or Bpf) refers to the number of correctly
received bits in a unit of time. Actual goodput is determined
by not only the BER but also the adopted ECC scheme.
More suitable ECC schemes lead to a higher goodput at a
certain BER. We use the channel capacity [51] to estimate
the theoretical goodput independent of ECC. It is calculated
from BER by considering the channel as a binary symmetric

channel. We measure the goodput of the audio channel in
bits per second (bps), and the video channel in Bytes per
frame (Bpf).
• Structural Similarity Index Measure (SSIM) quantifies the
similarity between two images. Its value ranges from 0 to
1, where 1 means a perfect similarity between the images,
while 0 indicates no similarity between them.
• Latency (ms): Since network delay is less relevant to
our designs, we primarily focus on latency induced by the
mTunnel processing stack, e.g., encoding, encryption, etc.
• CPU Usage (%) and Memory footprint (KiB): CPU usage
refers to the percentage of CPU power utilized by mTunnel
at a particular time, while memory footprint represents the
amount of occupied memory during its execution.

8.2. Video Tunneling Performance

8.2.1. Impact of Barcode Parameters. When integrating
mTunnel with conference applications, two primary factors
affect the BER and goodput of the video channel:
• Receiver’s View Size: The capacity of the video chan-

nel is determined by the size of the barcode area. The size of
the received barcode is determined by the display resolution
of the receiver and the client layout. A larger view window
allows smaller color blocks to be used to composite the
barcode, achieving higher capacity. By default, we use the
Speaker View layout in the conference client. Its thumbnail
view offers around 61k pixels. In the following, we modify
the thumbnail view size by adjusting the client window size
to investigate the impact.

In this experiment, the sender adopts the default setting:
a 1280×720 pixels encoding area with 8×8 pixel color
blocks. As depicted in Fig. 10(a), mTunnel demonstrates a
commendable performance with low BER across a range of
view sizes, spanning from approximately 61k pixels to 100k
pixels. However, when the view size becomes excessively
small, such as below 55k pixels in Fig. 10(a), the BER
increases significantly. This can be attributed to the video
compression algorithms of the client. It is worth noting that
in normal daily usage, the view size is unlikely to be reduced
to such an extent.
• Sender’s Color Block Size: Given a fixed view size

of 61k of the receiver, the capacity of the video channel
is determined by the size of the encoding/decoding color
block. As illustrated in Fig. 10(b), a larger block size
indicates greater resilience against decoding errors, resulting
in a lower BER. However, this comes at the expense of
lower throughput/goodput. Conversely, a smaller block size



increases data encoding density but comes with a higher
BER (as it takes more bits as redundancy to correct the
error bits). It is worth noting that the block size of 8×8
pixels, i.e., a prominent peak point in Fig. 10(b), achieves
an exceptionally low BER and high goodput. This is be-
cause this particular block size aligns with the operational
unit of compression algorithms, e.g., JPEG-like compression
typically divides images into blocks of 8×8 pixels. This
configuration leads to almost error-free frames in practice.
Occasional error frames are due to network fluctuations
(§8.2.2).

8.2.2. Impact of Network Conditions. In practical scenar-
ios, network conditions can be subject to dynamic changes.
Existing remote conference applications employ different
strategies to handle network degradation. We classify them
into two types according to their behaviors:

Frame Drop: Applications such as Tencent Meeting and
Ding Talk drop video frames to cope with the decreased
network bandwidth.

Frame Compression: Besides frame drop, applications
including Zoom and Microsoft Teams further employ high
compression ratios (uncompressed size over compressed
size) to counter poor network conditions.

mTunnel is compatible with the Frame Drop strategy,
as it does not involve intra-frame encoding/decoding op-
erations. Dropped frames only lead to dropped frames in
the video channel. However, mTunnel may potentially be
affected by the Frame Compression strategy. The reason is
shown in Fig. 10(c). Due to the high compression ratio,
the color blocks tend to interfere with neighboring blocks
and cause BER in decoding. We term this phenomenon as
over compression. We describe our experiments on different
products:
• Case Study on Zoom: When the available bandwidth

is relatively low, Zoom dynamically adjusts the data rate,
attempting to slightly increase it until packet loss is detected.
Subsequently, Zoom reduces the data rate once again. This
behavior exhibits similarities to TCP congestion control.
However, unlike TCP, Zoom does not retransmit lost frames.
Consequently, this downward adjustment of the bit rate often
results in over compression, even if the actual bandwidth
could support clearer frame transmission.

To understand the impact of this adaptive strategy, we
conduct a test by launching a conference and restricting the
download bandwidth with NetLimiter [52] for one partici-
pant while others continue video streaming. We observe that
low bandwidth might lead to disconnection in Zoom, when
the connection is valid, we measure the BER of the received
valid frames, their average BER is approximately 21% when
over compression happens, implying that this situation will
corrupt tunneling data.

The rate of the participant is further adjusted to analyze
the probability of over compression. Fig. 10(d) shows that
a bandwidth of 80k Bytes per second (Bps) is sufficient to
support a group conferencing of five participants. Therefore,
under normal network conditions, the strategy will not cause
problems for using mTunnel.

• Case Study on Microsoft Teams: Unlike Zoom,
Teams does not significantly reduce the data rate when
packet loss occurs. Consequently, as long as the avail-
able bandwidth satisfies the transmission requirements, the
frames can be transmitted clearly without substantial degra-
dation. Based on our experiments, Teams only requires a
network download bandwidth of approximately 34 kBps per
participant to achieve clear thumbnail views for them. When
the bandwidth falls below this threshold, Teams initiates
over compression, resulting in an average bit error rate of
approximately 7.5%.

8.2.3. Video Quality Performance. Fig. 11(a) shows the
screenshot of the Zoom client on the receiver’s side before
recovery. Fig. 11(b) shows the re-composited client UI with
recovered video content7. The text content in screen sharing
can be clearly recognized even when the font size is 16 pt.
Fig. 11(c) compares the received thumbnail frames with
and without mTunnel. The quality of the video is slightly
degraded due to compression.

To quantitatively compare the quality loss of mTunnel,
we utilize SSIM scores to quantify the similarity between the
original frame at the sender side and the received frame at
the receiver side. As depicted in Fig. 12(a) after bare-metal
Zoom transmission, the received frame exhibits an SSIM
score of 0.96. For mTunnel, we examine the SSIM scores
across different compression ratios of JPEG. The default
thumbnail frame (61k pixels) consumes 183 kB (in 24-bit
RGB color space) without compression. In order to accom-
modate this frame within one barcode (4.9 kB capacity) of
mTunnel, a compression ratio of 38:1 is required. As shown
in Fig. 12(a), when choosing a compression ratio of 38:1, the
bare-metal and tunneling thumbnail views are very close in
their SSIM scores. This implies that mTunnel can preserve
the video quality. The re-composited client UIs of Tencent
Meeting and Microsoft Teams are shown in Appendix.B.
They differ slightly in UI layouts, but present similar quality
performance when using the same encoding configuration.

8.2.4. Introduced Video Latency. mTunnel introduces ad-
ditional latency to video streams due to processing. As
illustrated in Fig. 12(b), the modulation procedure is the
major factor. Additionally, the total delay is related to the
payload size, i.e., the compressed video frame size, which
directly affects the video quality. To deliver high-quality
video streams, we utilize the full capacity of 4.9k Bytes
per code frame as the default setting, corresponding to a
total latency of approximately 13.5 ms. The piggybacked
audio content is subject to more latency. It will be analyzed
later in §8.3.4.

8.3. Audio Tunneling Performance

Voice tunneling in mTunnel comprises two parts: trans-
mission through the lossy video channel and transmission

7. We feed licensed photos from public database [53] into I/O isolators
as three participants’ camera streams for illustration.
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Figure 11: Video Tunneling Results.
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Figure 12: Video Tunneling Quality and Latency.

through the lossy voice channel. Since the behaviors of the
former are largely similar to video frame tunneling, this
section specifically focuses on the latter, the transmission
over the voice channel of PSTN networks.

As illustrated in Fig. 5, we developed a proof-of-concept
prototype of the encoding/decoding helper in a PC to process
the audio signals to/from the speakerphone connected to
PSTN. The primary participant hosts a conference, and the
PSTN participant joins the conference by dialing in.

8.3.1. Impact of Audio Modulation. The duration of the
chirp waveform used to represent bits is the major factor
affecting the tunnel capacity. A longer waveform for one bit
leads to a lower BER but also a lower modulation density.
Since we use a fixed 48 kHz sampling rate, we measure the
length of the waveform in terms of the number of samples
representing one bit.

In our evaluation, we keep the audio frame length and
header length fixed and only vary the non-header part. Using
more bits or time to represent 1 bit means fewer errors and
a smaller bit rate. As shown in Fig. 13(a), using 48 samples
for 1 bit achieves the maximum goodput. This configuration
leads to a goodput of approximately 934 bps, which can
meet the requirement of relatively reliably streaming data
in this channel (§5.2.2).

8.3.2. Impact of Network Conditions. We note that the
network bandwidth required for transmitting audio is small.
However, in cases of fluctuating network conditions, some
conference applications may occasionally experience accel-
eration or deceleration playback. We analyze the effective-
ness of our method in mitigating such frequency distortions.

To emulate this situation, we manually control the play-
back speed of the incoming audio from the PSTN network
to observe the robustness of the demodulation algorithms.
As for comparison, we also evaluate the performance of
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Figure 13: Factors Affecting Audio Tunneling Capacity.

pure FSK without the help of ReSync. The results, shown
in Fig. 13(b), indicate that the decoding process is barely
affected when the speedup/down ratio is below 5%. The
ReSync algorithm performs better in the case of slowdowns
because the slowdown does not result in the loss of in-
formation. The errors observed in the ReSync algorithm
mainly stem from the failure of header locating, rather
than distortions introduced by the playback speed variation.
Overall, the ReSync algorithm improves the goodput of the
audio transmission over pure FSK, as it helps to recover
from frequency errors.

8.3.3. Audio Quality Performance. We utilize the Mean
Opinion Score (MOS) [54] to evaluate the subjective audio
quality. The MOS value ranges from 1 to 5, with higher
values indicating better audio quality. The detailed scoring
protocol and results are presented in Appendix.C. The MOS
of the audio over the PSTN tunnel is 2.66, suggesting that
the transmitted voice quality is relatively fair. Additionally,
we gauge the Listening-Effort Opinion Score (MOSLE)
to measure the cognitive effort needed to comprehend the
sentences’ meanings. A MOSLE value of 3.01 indicates a
moderate level of effort required.

To further assess whether the conveyed voice informa-
tion is sufficient, we sample 100 speeches from the Common
Voice Dataset [55], compress and transmit them over the
PSTN audio tunnel. The received voice is transcribed using
the OpenAI speech-to-text API [56]. Results show that the
word error rate (WER) is approximately 20.3%. In contrast,
the WER of the original audio is 9.0%. Although this
indicates that the audio tunneling, especially its compression
procedure, introduces a certain level of error in terms of the
voice meaning, it is worth noting that (when we validate
the word errors) humans can still understand the overall
message with the help of contextual cues. As a rapidly ad-
vancing field, with further progress in speech understanding
technology, we can anticipate lower error rates.



Type Latency (ms)
Video Frame Buffering 100

Video Channel Processing 13.5
Audio Frame Buffering 90

Audio Channel Processing 31
Network Transmission 84

End to End (IP-IP)8 197.5
End to End (PSTN-IP)9 377.5

TABLE 2: Audio Tunneling Latency.

8.3.4. Introduced Audio Latency. Audio streams are tun-
neled in two ways: IP participants piggyback it in the
video channel; PSTN participants transmit it through the
audio channel. Both types of channels, besides network
transmission, introduce buffering and processing-induced
latency. We measure and list them in Table 2. The buffering
latency is due to the fact that both types of channels have
to send data periodically (with intervals of 100 ms and
40 ms, respectively). From an end-to-end perspective, dif-
ferent users might experience different latencies. The audio
latency among IP participants is mainly determined by the
frame interval of the video channel and the network latency;
the latency between PSTN and IP participants contains extra
latency from the PSTN audio channel hop.

According to the previous study [57], the perceptible im-
pact of latency becomes noticeable at around 300 ms, so the
introduced latency in IP participants remains relatively low
and falls within the range. When the network conditions are
good, the latency of PSTN participants also falls within this
range. Further, our implementation has not undergone much
optimization, so there is room for reducing the processing
latency as well.

8.4. Group Conversation Performance

To support multiple participants in one conference and in
the Speaker View layout, we adopt the bubbling up scheme.
We evaluate its feasibility in this subsection.

This test involves ten IP participants, with participant 0
selected as the receiver. We slightly resize the receiver’s
view window to accommodate four thumbnail views in its
sidebar, corresponding to viewing three other participants,
with the top thumbnail view representing the receiver itself.
Among the remaining nine participants, speaking slots are
randomly assigned to each of them. Each speaking slot lasts
for 2 seconds and is triggered at the second boundary of
the system time on their host PCs. These participants keep
sending ID messages in the video channel and playing the
signaling sound in the speaking slot.

When a participant “speaks”, its thumbnail will be
switched to the top of the sidebar of the receiver. The

8. The receiver does not require video buffering, leading to 100 (Video
Send Buffering) + 13.5 (Video Processing) + 84 (Network) = 197.5 ms.

9. 40 ms is the minimum buffer unit of Codec2. We use 5×10 ms buffers
to capture a 40 ms frame, leading to 90 ms latency in total. However, when
the primary participant relays audio frames to video frames, there is no need
to wait for the audio buffering. Hence, the latency is slightly reduced to
around 65 ms: 65 (Average Audio Buffering) + 31 (Audio Processing) +
84 (Network) + 197.5 (IP-IP) = 377.5 ms.
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Figure 14: Event Timeline of Group Conversation. (Upper
half) Each colored timeline indicates the behavior of the
corresponding participant. The bar periods indicate speaking
events, while the line periods indicate silence. (Lower half)
The bars signify the participants whose thumbnail views are
observed by the receiver.

receiver logs thumbnail views and the received ID messages.
The results are shown in Fig. 14. It can be observed that
almost all messages are successfully received except for the
one at the second 18. The results imply that the bubbling
up scheme works well and can support a large number of
participants to talk in the remote conference.

The message from participant 8 is lost due to exceeding
the capacity of the sidebar. However, it is worth men-
tioning that conference applications also only support a
limited number of participants to speak simultaneously. For
example, the number of Zoom is three [58]. When the
fourth participant begins to talk, it will be automatically
muted. So, the capability of mTunnel is consistent with these
commercial solutions in terms of simultaneous speakers.

Additionally, we observe that it takes an average of
312 ms for Zoom to switch the thumbnail view after the
signaling sound is sent out. This may result in the loss of
some heading audio signals, but in practical use, we found
that it is not a significant issue, especially if the participant
speaks continuously.

Path CPU Usage (%) Memory Footprint (KiB)
Video Sender 2.98 48,928

Video Receiver 0.73 22,722
Audio Sender 0.36 36.3

Audio Receiver 0.45 68.5

TABLE 3: Overhead of mTunnel Software Layer

8.5. System Overhead

We assess the system overhead of mTunnel from two
perspectives: CPU usage and memory footprint. Specifically,
we employ Process Explorer [59] to monitor the mTunnel
process. Table 3 shows the overhead when two participants
are involved, both utilizing the thumbnail view to com-
municate. Each “Path” includes the I/O isolator and the
channel adapter corresponding to the media stream. The
values demonstrate that the overhead of mTunnel is generally
minimal. Typically, conference clients can support more par-
ticipants, where the sending path overhead remains constant,



while the receiving path overhead increases proportionally
with the number of participants displayed. It is worth noting
that even in the densest gallery view, the number of dis-
played participants is limited, e.g., within 7×7. Participants
exceeding the display capacity will not be shown by the
client and hence do not introduce mTunnel overhead.

9. Security Analysis

mTunnel takes full control of the encryption process
and isolates the original media streams from the conference
clients. As long as the host system is not compromised, the
conversation is expected to be secure. In the following, we
discuss the security properties of mTunnel and several non-
trivial attacks against the protection.

Forward Secrecy and Post-compromise Security:
mTunnel employs the Double Ratchet algorithm [50] from
Signal to update the session keys. The algorithm uses the
Diffie-Hellman protocol to periodically generate new session
key pairs. This can ensure forward secrecy, i.e., the adver-
sary cannot compromise the past conversations even if the
participant’s long-term private keys are compromised. The
algorithm also allows mTunnel to secure the conversation
even if its secret has been compromised (Post-compromise
Security) [60]. However, exploiting these compromised keys
allows adversaries to launch stronger attacks in conjunction
with other types of threats [45], e.g., impersonation.

A related issue is that if a participant is unable to trans-
mit messages, e.g., due to falsely disabled video streaming,
adversary’s in-path blockage, etc., then other participants
could no longer update their symmetric ratchet key pairs,
which leads to a downgradation of the security level.

Message Consistency: Message consistency assures that
all the participants receive the same copy of the message.
mTunnel enforces message consistency through pairwise
E2EE. However, due to the bandwidth limitation, the phone
participant has to rely on its primary participant to reach IP
participants, thereby the primary participant can tamper with
the messages sent by/to the phone participant. To ensure the
consistency, the phone participant should choose a trusted
participant as its primary host or alternatively set up its
own permanent conference client in its home network as
the primary participant.

Group Member Changes: When a new participant
enters the meeting, ze should not be able to decrypt pre-
vious messages. mTunnel uses pairwise keys, so the new
participant has to establish new session keys with other
participants and cannot access previous sessions. Similarly,
when a participant leaves the meeting, ze should not be able
to decrypt later messages. mTunnel will stop enclosing the
ephemeral key encrypted by the session key of the offline
participant. As current conference clients do not actively
notify which participants have gone offline, future mTunnel
implementation needs to actively watchdog this information.

Replay Attack: The adversary can record the network
traffic of a past conversation, and resend some of the mes-
sages to fool the receiver. mTunnel can withstand replay
attacks, as it utilizes the Double Ratchet to frequently update

the session keys. A message with an expired session key
will not be accepted. mTunnel further includes timestamps
in video frames to ensure that the messages are only valid
for a certain period of time.

Backdoor Attack: The adversary is a malicious insider
who can insert backdoor code into the conference clients.
This backdoor can fetch private data through the client and
send it to the remote adversary. mTunnel isolates the client
process from the raw media data and only allows access to
the ciphertext.

Man-in-the-middle Attack: The adversary is either a
malicious insider or an adversary who compromises the
application cloud. It has an on-path capability to eavesdrop,
modify, and inject traffic to/from conference participants.
The adversary might initiate a connection with two partici-
pants. Then, it can decrypt the messages from both sides and
relay them to each other. mTunnel can prevent such attacks
as long as the participants can properly verify public keys
at the initial stage.

Zoom Bombing Attack: The adversary can join the
meeting without an invitation to eavesdrop on the conversa-
tion or deliver harmful messages. Usually, Zoom Bombing
is due to improper settings or on-purpose leakage of the
password of the conference application. mTunnel can secure
the conversation content if the adversary’s key and identity
are not within the authorized set. However, mTunnel can-
not forbid the adversary to derive video and audio to the
normal channels of the conference clients. Note that while
mTunnel can block these contents, they can still interfere
with mTunnel messages, e.g., the bubbling up signals in
the audio channel, and lead to DoS. To completely mitigate
zoom bombing, the participants should utilize the features
of conference clients, e.g., the waiting room.

10. Related Work

Several works propose schemes to transmit data over the
GSM voice channel based on the variant of FSK [61], [62].
Some studies employ barcodes and QR codes to realize data
transmission over the visual channel in the air interface [63],
[64]. These efforts provide a general basis for our communi-
cation design, but they are not dedicated to addressing spe-
cific security issues. mTunnel, in particular, focuses on the
security concerns within remote conferencing applications
or more generally, media streaming applications. Due to the
sensitivity of media data, there have been many relevant
efforts in this domain.

Securing Audio Streams: Analog speech encryption is
one way to secure voice signals. It relies on time-domain or
frequency-domain scramblers [65], [66], and pseudo-noise
sequences [67]. The encryption has a small overhead at the
cost of low-level security. Hou et al.apply the Hermes Al-
gorithm to transmit certificates over the VoIP audio channel
to verify the identity of the caller [68]. Similarly, Reaves et
al.execute a TLS-inspired authentication protocol over the
telephone network [69]. However, their protocol could only
transmit data in a low bit rate instead of supporting real-time
media communication like mTunnel. Castiglione et al.add



an encryption layer and a security control layer in 3G-
324M architecture to secure end-to-end communication over
the CSD of 3G networks [70]. The two layers encrypt the
digital signal before modulation. Nevertheless, their design
only supports 3G videotelephony and requires modification
of the 3G-324M protocol. In [71], Peeters et al.design a
distance bounding-inspired protocol to protect the global
telephone network from redirection attacks by modeling
round trip time, but it fails to resist other attacks. The
problems addressed by these works are orthogonal to ours.

Securing Video Streams: As far as we know, there
is no existing work on E2EE over video channels. Most
discussions on protecting video streams are based on con-
ventional network channels. Some work contributes to re-
lated aspects. Encryption-then-compression algorithms help
the transmission over untrusted channels. Some works [72],
[15] try to encrypt images by dividing them into blocks and
performing block scrambling-based encryption. The block-
based encryption does not require further modulation and
is robust to JPEG compression. However, their security
is not guaranteed. The adversary can still infer informa-
tion from the blocks. Other Encryption-then-compression
algorithms [73], [74] like compressed sensing require co-
operation between encryption and compression, which is
computationally intensive and also lacks security proof.

Securing Lossless Streams: A number of works imple-
ment software [75] or browser extensions [76] to automati-
cally substitute encrypted text for user input. Other literature
proposes new approaches to protect user data stored in un-
trusted cloud [77], [78]. Our approach to protecting lossless
channels is similar to theirs.

11. Limitations

As we describe in §5.2.2, currently, mTunnel only sup-
ports one phone participant. This is because the available
bandwidth of the PSTN audio channel is very limited. A
method to increase the number of PSTN participants is to
use time-division multiplexing (TDM), a scheme similar to
walkie-talkies. Data from PSTN to IP is transmitted in a
time-division manner, and data from IP to PSTN is shared
using the same key. Another more secure method is to
associate each PSTN participant with an independent PSTN
connection, i.e., create a new conference for each PSTN
participant, and then interconnect them to IP participants
through relaying data between the conference instances.

12. Conclusion

In this paper, we emphasize the potential privacy risks
in remote conference applications and propose mTunnel that
utilizes multiple modalities of information channels, such
as video and audio streams, as encrypted channels for data
transmission. mTunnel is designed in a way that does not
require any modifications to the user’s host system and is
compatible with almost all commercial conference products.
Furthermore, the design of mTunnel can be applied to secure

other media streaming scenarios, such as chat apps, video
surveillance cameras, and edge IoT sensors.
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Appendix A.
Lossless Channel Adapter and I/O Isolator
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Figure 15: Secure Chat Interface mTunnel.

Lossless Channel Adapter: As illustrated in the chat
interface displayed in Fig. 15, the lossless channel adapter
is responsible for leveraging text in chat input to encapsulate
ciphertext. The lossless channel adapter encrypts the input
text into ciphertext and then modulates the ciphertext to
a set of visible characters through Base64 encoding [79].
It also prepends a header ”!?:” to inform the receiver side
that an encrypted frame has been received. On the receiver
side, after detecting the header, the lossless channel adapter
demodulates the received characters into ciphertext and sub-
sequently decrypts the ciphertext to plaintext.

I/O Isolator: On the sender side, the I/O isolator
intercepts and suppresses keystrokes to prevent keystroke
eavesdropping. On one hand, it displays the plaintext on
the screen so that users can view and modify the content.
On the other hand, when the user stops typing and presses
“Enter” to send a message, it transfers the recorded input
to the lossless channel adapter to undergo encryption and
modulation.

Windows offers hooks as a special mechanism that per-
mits developers to install a subroutine to monitor keystroke
messages and process them before they reach the target
window [80]. Using hooks, we can identify a keystroke,
suppress it, and play the ciphertext as a combination of
other keystrokes instead. Windows provides an API called
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Figure 16: Using mTunnel with Microsoft Teams and Tencent Meeting.

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg.
Gender M M M M M M M M M M M F F F F F F F F F /
MOS 3.6 1.8 2.6 2.8 1.8 2.4 3.0 2.8 3.2 2.2 2.8 3.0 2.0 2.0 1.8 2.4 3.0 4.0 2.8 3.2 2.66

MOSLE 4.0 2.0 3.4 2.6 1.8 3.4 2.6 3.2 3.4 2.0 2.2 3.0 2.2 2.4 2.8 3.2 3.2 5.0 4.0 3.8 3.01

TABLE 4: MOS Values of PSTN-Tunneled Audio (with Codec2@700 bps CBR)

Score MOS MOSLE

5 Excellent Complete relaxation possible;
no effort required

4 Good Attention necessary;
no appreciable effort required

3 Fair Moderate effort required

2 Poor Considerable effort required

1 Bad No meaning understood
with any feasible effort

TABLE 5: MOS Opinion Scales

SetWindowsHookEx[81] to facilitate hook implementation.
To implement our text isolator, we use a Python wrap-
per [82] of this API. By specifying event types and mes-
sages, we can use hooks to automatically execute encryption
or decryption callback functions.

On the receiver side, the I/O isolator captures the
screen and recognizes the encrypted and modulated se-
quence through optical character recognition (OCR). Then it
delegates the lossless channel adapter to decode the received
characer. Finally, it displays the decoded plaintext to overlay
the ciphertext.

Appendix B.
Securing MicrosoftTeams and Tencent Meeting

Fig. 16 showcases using mTunnel to secure other remote
conference applications. It adopts an identical data transmis-
sion configuration as the main body evaluation. mTunnel
is capable of functioning across various remote conference
applications after small adaptation to different UI layouts.

Appendix C.
MOS Experiment on PSTN-Tunneled Audio

We adhere to the ITU-T MOS guideline [54] to assess
the audio quality after the PSTN tunnel. Participants are
directed to listen to five groups of sentences, each consisting
of two English sentences from [33] encoded using Codec2
700C, i.e., 700 bps CBR. All sentences are approximately
2 to 3 seconds, making it difficult to derive much context-
based understanding. The sentences also vary in terms of
the talker’s gender and intonation, as the codec may respond
differently to various voice frequencies.

Table. 5 is the scoring standard presented to participants.
Following the playback of each sentence group, participants
provide their feedback on the perceived quality of the speech



(MOS), as well as the effort required to understand the
sentences (MOSLE). The effort required for understanding
is not necessarily determined by the audio quality, as the
presence of noise may not hinder the comprehension of
words.

Table. 4 shows the average MOS value from each par-
ticipant. Results indicate that moderate effort is required to
understand the sentences.

Appendix D.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

D.1. Summary

Voice conferencing is ubiquitous, but platforms vary in
their security in practice. This paper proposes mTunnel, a
shim that sits between media devices and the conference
software. mTunnel encrypts data using a variant of the
Signal protocol before it is fed into the conferencing client.
The upshot is that the user can independently ensure E2EE
regardless of the client’s behavior. Along the way, authors
show some other neat advantages like enabling E2EE for
dial-in clients.

D.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Addresses a Long-Known Issue
• Provides a Valuable Step Forward in an Established

Field
• Other

D.3. Reasons for Acceptance

1) Authors significantly improve and expand on tunnel-
ing encrypted data/media through unpredictable, com-
pressed media channels.

2) This approach provides for defense-in-depth even in
E2EE conference platforms that may not be otherwise
trustworthy.

3) Support for PSTN bridges required substantial innova-
tion.

4) The contributions are clear, and the tool is well con-
structed.

D.4. Noteworthy Concerns

This approach faces significant barriers to deployment,
including group key distribution challenges.


